Mark Scheme (Results) Summer 2010

GCE

GCE Physics (6PH07) Paper 1

Unit 3B: Exploring Physics
International Alternative to Internal Assessment

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on +44 1204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Alternatively, you can speak directly to a subject specialist at Edexcel on our dedicated Science telephone line: + 441204770696

Summer 2010
Publications Code US024555
All the material in this publication is copyright
© Edexcel Ltd 2010

Question Number	Answer	Mark
$\mathbf{1 (a)}$	C	(1)
(b)	B	(1)
	Total marks for question 1	$\mathbf{2}$

Question Number	Answer	Mark
2(a)	A	(1)
(b)	D	(1)
	Total marks for question 2	$\mathbf{2}$

Question Number	Answer	Mark
3(a)	A	(1)
	Total marks for question 3	$\mathbf{1}$

Question Number	Answer	Mark
5(a)	Calculation using one pair of values (e.g. 0.18 s and 159 mm) Identifies $s=0.5 a t^{2}$ or $s=u t+0.5 a t^{2}$ with $u=0$ Substitution of s and g , t and g , or s and t Correct evaluation of t, s or a for chosen values Examples: $\begin{aligned} & \mathrm{t}=\int\left(2 \times 0.071 \mathrm{~m}^{2} 9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)=0.12(\mathrm{~s}) \\ & \mathrm{s}=0.5 \times 9.8 \mathrm{~m} \mathrm{~s}^{-2} \times(0.18 \mathrm{~s})^{2}=0.159(\mathrm{~m}) \\ & \mathrm{a}=2 \times 0.012 \mathrm{~m} /(0.05 \mathrm{~s})^{2}=9.6\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	(1) (1) (1)
5(b)	Examples: - Hold/ drop the rule vertically - Drop the rule cleanly - Release from rest - Ensure your fingers are just at the end of the rule - Practice - Repeat - Use the same bit of your fingers for measurement - Avoid parallax errors in the reading Do not reward contradictory statements	
5(c)	Value, uncertainty - I mark each Value: 0.19 (s) Absolute uncertainty seen or implied: ± 0.01 if anomalous result ignored or ± 0.06 if not Allow uncertainty as percentage eg 5(.3)\%or 37(.5)\% Note 0.16 ± 0.06 scores second mark only 0.19 ± 0.06 scores first mark only	(1) (1)
	Total marks for question 5	8

Question Number	Answer	Mark
6(a)	Calculation correct plus unit Example of calculation: $\begin{aligned} & \pi \mathrm{d}^{2} / 4=\pi\left(0.12 \times 10^{-3}\right)^{2} / 4=1.1(3) \times 10^{-8} \mathrm{~m}^{2} \text { (or } 1.1(3) \mathrm{x} \\ & \left.10^{-2} \mathrm{~mm}^{2}\right) \end{aligned}$	(1)
6(b)	1 mm (in 100 mm) is reasonable (allow 1/ 100 or 1%)	(1)
6(c)(i)	ρ and A are constants or ρ / A is constant $R \propto I$ or comparison to $y=m x+c$	(1) (1)
6(c)(ii)	- $41.9 \times$ answer for (a) (ignore inconsistent units) - answer in range $4.55-4.80 \times 10^{-7} \Omega \mathrm{~m}$ - correct answer to 2 sig fig	(1) (1) (1)
6(d)	Valid points, do not reward single word responses Ignore comments on length 2 max Examples: - Small diameter or diameter only measured once - Any zero error - Kinks in wire - Contact resistance - Resistance of connecting wires - Accuracy of ohmmeter	$\begin{array}{r} (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (\max 2) \end{array}$
	Total marks for question 6	9

Question Number	Answer					Mark
7(a)	Refraction towards normal ($r>0$) at first face, away at second Angle of incidence and refraction marked correctly at first face					(1) (1)
7(b)	Mark the emergent ray OR Mark the point of emergence Appropriate joining up statement to give path of ray through block					(1)
7(c)	Too few values Limited range Should use protractor with 0.5 degree markings Repeat measurements at second face					(1) (1) (1) 1
7(d)	Correct completion of sin i and sin r rows (values consistent to 2 or 3 sf and penalise rounding errors)					(1)
	i/ ${ }^{0}$	20	30	40	50	
	r/ ${ }^{\circ}$	15	20	26	32	
	$\sin _{i}$	0.34/0.342	0.50/0.500	0.64/0.643	0.77/0.766	
	sin r	0.26/0.259	0.34/0.342	0.44/0.438	0.53/0.530	
	Suitable scales, starting at zero Labels on axes Correct plotting of points using sensible scale					(1) (1) (1)
7(e)	Line of best fit Valid comment on whether the line should / should not go through the origin Example of calculation: when $i=0, r=0$, therefore should $\sin i=n \sin r$, therefore should $\sin i \propto \sin r$ (or directly proportional), therefore should maybe systematic error, therefore not					(1)
7(f)	Large triangle $\geq 60 \mathrm{~mm}$ horizontally to determine gradient Answer in range 1.35-1.64					(1) (1)
	Total marks for question 7					14

Further copies of this publication are available from
International Regional Offices at www.edexcel.com/ international
For more information on Edexcel qualifications, please visit www.edexcel.com
Alternatively, you can contact Customer Services at www. edexcel.com/ ask or on +441204770696
Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

